Composite semi - infinite optimization
نویسندگان
چکیده
Abstract: We consider a semi-infinite optimization problem in Banach spaces, where both the objective functional and the constraint operator are compositions of convex nonsmooth mappings and differentiable mappings. We derive necessary optimality conditions for these problems. Finally, we apply these results to nonconvex stochastic optimization problems with stochastic dominance constraints, generalizing earlier results.
منابع مشابه
Optimization of Sound Transmission Loss of a Composite Rectangular Plate with Infinite Baffle
In this paper, optimization of the sound transmission loss of finite rectangular anisotropic laminated composite plate with simply supported boundary conditions has been developed to maximize transmission loss. Appropriate constraints were imposed to prevent the occurrence of softening effect due to optimization. For this purpose, optimization process was incorporated into comprehensive finite ...
متن کاملOptimization of infinite composite plates with quasi-triangular holes under in-plane loading
This study used particle swarm optimization (PSO) to determine the optimal values of effective design variables acting on the stress distribution around a quasi-triangular hole in an infinite orthotropic plate. These parameters were load angle, hole orientation, bluntness, fiber angle, and material properties, which were ascertained on the basis of an analytical method used by Lekhnitskii [3]. ...
متن کاملQuasi-Gap and Gap Functions for Non-Smooth Multi-Objective Semi-Infinite Optimization Problems
In this paper, we introduce and study some new single-valued gap functions for non-differentiable semi-infinite multiobjective optimization problems with locally Lipschitz data. Since one of the fundamental properties of gap function for optimization problems is its abilities in characterizing the solutions of the problem in question, then the essential properties of the newly introduced ...
متن کاملNon-Lipschitz Semi-Infinite Optimization Problems Involving Local Cone Approximation
In this paper we study the nonsmooth semi-infinite programming problem with inequality constraints. First, we consider the notions of local cone approximation $Lambda$ and $Lambda$-subdifferential. Then, we derive the Karush-Kuhn-Tucker optimality conditions under the Abadie and the Guignard constraint qualifications.
متن کاملA New Approach for Approximating Solution of Continuous Semi-Infinite Linear Programming
This paper describes a new optimization method for solving continuous semi-infinite linear problems. With regard to the dual properties, the problem is presented as a measure theoretical optimization problem, in which the existence of the solution is guaranteed. Then, on the basis of the atomic measure properties, a computation method was presented for obtaining the near optimal so...
متن کامل